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Phase Techniques for Imaging and Recognition

1. Introduction

This report describes the use of phase in imaging systems

and in recognition systems. The work was sponsored by RADC

through a subcontract to Syracuse University and was conducted in

the time period of July 1988 to July 1989.

The imaging application is to combat the deleterious effects

of a turbulent atmosphere or a misaligned optical system. We

describe the theory and give one-dimensional examples for a

technique called "phase diversity". It uses a simple optical

system to capture distorted images of an object and uses a

computer algorithm to restore the image.

The recognition application uses phase-only filtering

techniques to extract an object from a scene. We describe the

math anrq give some one-D examples. We present anecdotal evidence

that, if a binary phase-only filter is rotated in spatial

frequency before it is binarized, an object is detected more

efficiently in a scene. A metric to describe the efficiency is

defined and an average-over-rotation technique Ls introduced.



2. Phase Diversity Imaging.

2.1 General

Many factors contribute to the distortion of a measured

image. Two prime examples are (a) the turbulent atmosphere

between the object and the imaging system, and (b) physical

perturbations that degrade the optical system's point spread

function.

Both oi these effects are adequately modeled by a wavefront

distortion (or phase aberration) w(x,y) across the entrance pupil

of the taking syst(-.a. See Figure 1. This wavefront varies as a

function of time and causes a distant point to spread and to

dance across the image plane such that the image, integrated over

the exposure time, is severely blurred.

One way to combat these distortions is to construct an

adaptive optical system. By one means or another the wavefront

is measured and a set of control signals is developed to push and

pull a reflective, flexible membrane or a set of segmented

mirrors that are placed in the optical path. These corrections

attempt to introduce the conjugate wavefront -w(x,y) so that the

blurring is removed. Phase retrieval [1] is one way to measure

the wavefront.

Wavefront sensing by phase retrieval implies extraction of

the Fourier transform of a complex signal based on observation of

the modulus of the signal. Only the image intensity from a

-2-
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Figure 1. Generation of the wavefront w(f).
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Figure 2. Quadratic phase diversity introduced with a beam splitter
and two focal planes.
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system's focal place array is required to estimate the phase

aberratior~s. These estimates are used to derive control signals

to align (or to maintain alignment of) the optical system.

The phase retrieval concept can be used in both a

predetection and post-detection mode. In the former, the control

system labors to keep the optics in a diffraction-limited mode

all the time. In the latter, the control system induces a phase

diversity that allows successive images to be restored to nearly

diffraction-limited quality by post-processing of the image.

This second mode is particularly interesting because it will

reduce the design effort for both the optical system and the

control system.

A further advantage of this second mod,'31 which we call

"phase diversity," is that it can be used while the optical

syst~em is imaging an extended object. No separate point source

(target "glint") or active imaging is needed. It is an entirely

passive operation. The technique is described in detail in [2]

and further results and examples appear in [3], where the

technique is used to align an optical system.

A particularly simple kind of diversity is a quadratic

phase. This can be introduced by defocusing the opt!.cal system.

Thus, an in-focus image is measured and an out-of-fo-cus image,

one with quadratic phase diversity, is also measured, perhaps

simultaneously, as shown in Figure 2.

-4-



2.2 The Mathematics of Phase Diver-'ity.

With a distorting wavefront w(f) across the aperture of an

otherwise perfect optical system, the image of distant point

source is

p(x) h Ih(x) 12  (1)

where h(x) has Fourier transform

H(f) = A(f) exp (-j w(f)) (2)

and where A(f) is the aperture function. Figure 3 shows an

unobscured aperture function A(f) and the resulting p(x) 's for

w(f) = 0 and for another, non zero wf).

If a distant, incoherent object o(x) is imaged by an

optical system with phase diversity, the observed images are

Y1(X) = O(x) * pl(x) (3)

and Y2 (x) = o(x) * P 2 (x) . (4)

Both yl(x) and Y2 (x) (or their Fourier transforms Yl(f) and

Y2 (f)) are observed. Buit neither p!(x) nor p2 (x) is known. We

know only that P 2 (x) is formed by adding a known phase diversity,

usually quadratic, to the unknown wavefront w(f).

--5--



A(f) =aperture function

p (x) a PSF foe, a clear aperture
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Figure 3. Point spread function-q for a clear and an aberrated apertur,•.



If, however, we are able to estimate Pl(f) and P2 (f), a

reasonable estimate for O(f) is [1)
S,

Y1 (f) P 1  (f) f Y2 (f) '2* (f)

o(f) = 1i, (f)1 2  + 1p2 (f)1 2  (5)

A A A

where Pi 1 4), P2 (f) and O(f) are the estimates of Pl(f), P2 (f) and

O(f), respectively. We are left with the problem of estimating

PI(f) and P2 (f).

Also in Reference (1], Gonsalves suggests a metric for

estimating Pl(f) and P2 (f). The metric is

E = ('yl(x) -g 1 (x)3 2 dx + [y 2 (x) -g 2 (x)]2 dx, (6)

where g 1 (x) -- o(x) * pl(x) or Gl(f) = 0(f) Pl(f) (7)

,A A A
and orx 0(x) = p2 (x) or G2 (f) = 0(t) P2 (f). (8)

That is, one forms joint estimates for o(x), pl(x) and P2(X);

then (7) and (8) are used to find an estimate for the two

observed signals yl(x) and Y2 (x), namely gl(x) and g 2 (x); thlen

the riean square error is calculated as in Equation (6).

The procedure reduces to a curve fitting exer-"ise. One

estimates the wavefront as w(f) and, from Equations (1) and (2),

the estimated point spread function pj(X). Then one adds the
AA

known phase diversity to w(f) and calculates p2(x). Next the

object's estimated Fourier transform is calculated froin !Equation

-7-



(5). And, finally, the mean square error metric E is calculated

from Equation (6).

A search procedure is used to modify the estimated wavefrcnt

w(f) until E is a minimum. The procedures yields estimates of

both the unknown wavefront and the unknown object.

Reference [1] also shows that Equations (5), (7) and (8) can

be used to simplify the calculation of the metric E. Thus, (6)

becomes

A A
IY 1(f) P1 (f) - Y2 (f) P2 (f)1 2

IPlx)l 2 + IP2 (f)l 2

This means that E can be calculated without actually calculating
A

the object spectrum O(f).

A block diagram of the procedure is shown in Figure 4.

Examples are given in the next subsection.

--8--
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Figure 4: Estimation of w(f) and the object spectrum
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2.3 Examples.

In Figure 5 we show phase aberrations with and without

diversity. The upper phase, wL(f), contains both quadratic and

cubic terms in f. The lower phase, w2 (f), has a quadratic phase

term added to w1 (f) so the wavefront w2 (f) contains more waves of

aberration. Figure 6 shows the input object and the two point

spread functions, pl(x) and P2 ( x). Figure 7 shows the two

observed images yl(x) and Y2 (x). We used these two to make an

estimate of both w(f) and the object. The extimate, o(x), shown

in Figure 7 is a nearly perfect version of the input object.

This example is ideal in two respects. There is no noise

added to the observations and the unknown wavefront w1 (f) has

only two degrees of freedom: focus and coma. The search routine

has no problem finding w1 (f).

-10-
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When noise is added the results are, typically, as shown in

Figures 8 and 9. In Figure 8 noise of rms value 3.0 is added to

data with a maximum value of 120 for a signal-to-noise ratio of

40.0. This result was calculated with the exact w1 (f), as if it

were known. It shows the effect of noise on signal estimation.

In Figure 9 we show a typical result when w1 (f) must be

estimated based on the noisy data. The estimation procedure

yields a w1 (f) which is only slightly inaccurate (focus = 0.166

instead of 0.170 and coma = 0.000798 instead of 0.000800 and the

estimate of the object suffers very little. Figure 9 shcws how

well the object can be estimated when w(f) and the object must be

estimated, jointly, at least for simulated data.
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2.4 Details of the Search.

In Figures 10, 11 and 12 we show some details of the search

for focus and coma in w1 (f). Figure 10 shows the metric as the

parameters vary over a region around the true values. The

minimum is quite broadly defined.

Figure 11 shows the actual search path in focus-coma space.

Many (18) iterations of a one-dimensional search, alternating in

focus and coma, were used to find the minimum mean square error.

Figure 12 shows how the metric varies when coma is held

constant and when focus is held constant. The curvfes show that

the metric has, indeed, a well-defined minimum.

-17-
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Figure 11. (a) Search path in focus-coma space and
(b) the corresponding MSE.
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2.5 Discussion.

These results are quite promising, except that they are only

computer simulations. Also they are all results for one-

dimensional signals.

We would, next, apply the algorithm to simulated data in two

dimensions. Reference (3) shows some results that are

applicable. Notably, in (3] the authors found that the metric

had to be modified to find, first, a minimum when only low-order

(frequency) components of the unknown object were to be

estimated.

A further step would be to attempt an experimental

verification of the theory. This would be done, first, in a lab

and under a controlled environment, where w1 (f) would be

determined by an auxiliary method to test how well the technique

works.

Then the technique would be tried on an adaptive optics

system in which two simultaneous measurements can be made. A

natural place to try the method would be on an astronomical

telescope, perhaps at Mauii.

-21-



3. Recognition

3.1 General

A particularly challenging and difficult problem is the

automatic recognition of an object in a real scene. Successful

solutions to the problem have depended in great part on the

nature of the object and the environment of the observation/

detection process.

Perhaps the most successful application of automatic

recognition is the bar code scanner. Here the system engineer

needs only to detect a series of on-off pulses from a bar code

which has been physically placed on the object. The measurement

system is a relatively noise-free environment provided by a

scanning laser beam which penetratPe a small window.

Another successful application is a character reader.

Typically one feeds a page Into an optical scanner, then the

information is digitized, stored and processed to recognize lines

of characters and the characters, themselves. Again the object

is highly structured (except for handwritten material, which is a

far more difficult problem) and the measurement environment is

relatively begnin.

Industrial inspection is another successful application.

For example, the U.S. Treasury Department inspects all printed

money by conparing each note (in a large page of notes) to a

-22-



standard note. The pages fly off the press at such a speed that

automatic detection of flaws is the only reliable way to find

them. Again, the detection is done by digitizing an image of the

note and by digital correlation with the standard.

In all of these applications, a common thread is the

digitization of the object and computer processing to make

decisions. For objects and scenes which are less standardized,

the computer processing needs are overwhelming. A partial

solution is provided by optical signal processing which uses the

massive, parallel computing power of lenses and masks to cross-

correlate the image of an object with the image of the scene.

A good summary of the literature on optical processing

appears in a special issue of oDtical Engineering, Reference [4].

This issue reviews Vander Lugt filters, phase-only filters,

techniques to handle rotation and scale variations, synthetic

discriminant functions, Wigner distributions and other

specialized techniques. We are especially interested in the work

on phase-only filtering [5] (6] [7] because of our earlier work

[8] [9] [10] which uses interactive techniques to design

holographic and phase-only filters.

-23-



3.2 optical Processing

It is well known that if a real object o(x) is to be

detected in a real scene s(x), the crosscorrelation of o(x) with

s(x) is an optimal statistic for detection. The most likely

location of the object is where c(x), the crosscorrelation, is a

maximum.

In the spatial domain c(x) is

c(x) = •s(u) o(u-x) du = s(x) * o(-x) ; (9)

and in the spatial frequency domain C(f) is

C~f) S(f) 0 *(f). (10)

To see why crosscorrelation is a sensible statistic for

detection of an object, consider a scene consisting of the object

plus noise.

s(x) = o(x) + n(x). 11)

The noise n(x) could be measurement noise or extraneous objects.

Then C(f) is

C(f) = (0(f) + N(f)] O*(f) = 10(f) I + N(f) O*(f). (12)

-24-



With o(x) located at x-O, we expect c(x) to be maximum at x=0.

But

c(o) = C(f) df

10(f) 12 df + N(f) 0*(f) df. (13)

The first term is the signal energy in o(x), a real non-

negative quantity. The second term is noise-like, whose mean

tends to ozero and whose variance is complicated to compute.

However, the detectability of the object is strongly dependent on

the zignal energy term.

The crosscorrelation in (9) can be computed optically. A

typical processor consists of two lenses and a mask. The first

lens calculates the Fourier transform of the scene, the mask

forms the product in (10), and the second lens takes the inverse

Fcurier transform to form c(x).

Two important elements of this scheme are the mask and the

transducer that forms the optical scene. We will not attempt to

catalogue the transd-icer solutions. A typical approach is to

capture the scene with a video camera and to display the scene on

"a semi-transparent medium which can be, sumultaneously, probed by

"a collimated, monochromatic light source. This will form an

optical signal which can be transformed by a lens.

-25-



We are especially interested in the mask. The choice of a

suitable mask has a 100-year history. Early attempts by E. Abbe

in 1893 and by A. B. Porter in 1906 are reviewed in [11]. They

used aperture stops to provide a gross spatial filtering of a

scene. Goodman [llj also describes work done in the 1950's by A.

Marechal, who used an amplitude and binary phase filter to

restore a focus-degraded image.

In 1964, A. Vander Lugt (12] described an optical filtering

method that detects a general object in a scene. He used a

holographic technique to record the object's Fourier tranform,

which is the mask required by the optimal filter. The mask

attenuates the optical intensity in the Fourier transform domain

with attenuations which vary continuously over the range 0 to 1.

The desired crosscorrelation appears in an off-axis term in the

back focal plane of the second lens.

One problem with the holographic approach of Vander Lugt is

that the continuous, 0 to 1 attenuation of the mask is difficult

to achieve since there are usually some non-linearities in the

fabrication process. Another problem is that a large portion of

the energy at the output of the optical processor is wasted since

the desired crosscorrelation appears off-axis. The largest

energy is on-axis and an amount equal to the the desired signal

appears in symmetry to it.

-26-



The second problem is eliminated if a phase mask can be made

(5]. All the signal energy will appear in an on-axis,

crosscorrelation term. Also, the first problem will be reduced

if the phase is binary [7]. In the next section we show some

examples. References [4] through [7] give a good review of the

literature.

-27-



3.3 Example

In our examples we define the observable function CCF(x),

which is the magnitude squared of the crosscorrelation function

of s(x) with o(x). We further normalize CCF(x) so that its

maximum value is unity. Thus

CCF(x) = Ic(X)1 2 / B , (14)

where B is the maximum value of lc(x)1 2

In Figure 13 we show an object o(x) and a scene s(x). The

scene has object and noise in it.

Figure 14 shows CCF(x) for several filters, H(f), which are

used to perform the crosscorrelation. In all cases the frequency

crosscorrelation is

C(f) = S(f) H(f) . (15)

In Figure 14(a), H(f) is 0* (f), the conventional matched

filter. H(f) is a complex-valued filter, realized by whatever

means. As expected the peak of CCF(x) i'ppears at the location of

the input object.

-28-
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(b)

noisg scene

Figure 13. (a) Object to be found in (b) the noisy scene.
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(a)

CCF:Complex filter

(b)

CCF:Phase filter

CCF:Binarv filter

AM.

Figure 14. Crosscorrelation of the scene and object for various
object filters, H(f).

(a) H(f,) - matched filter = O*(f).

(b) H(f) - phase-only filter - O&(f) / I0(f)J.

(c) H(f) = binary filter = Sign ( Real ( O*(f) fit



Figure 14(b) shows CCF(x) when the H(f) is a phase-only

filter, namely the phase of O*(f). That is,

H(f) = O*(f) / I0(f) 1 (16)

Note that the peak is better defined when compared with Figure

14(a). This is a typical result for a phase-only filter, when

the object has many edge-like features. Equation (16) has the

effect of enhancing the high-frequency region of C(f) which, for

a signal with large high-frequency content, sharpens the

crosscorrelation function.

Figure 14(c) shows CCF(x) when the filter is a binary

version of O*(f). Thus, H(f) is

r 1 , Re (0*(f) e-Jt) > 0

H(f) =

I -1 , Re (0*(f) e-jt) < 0 (17)

In Equation (17), t is a rotation angle to be described later.

Note that there is only a slight degredation between 14(b) and

14(c); this, in spite of the fact that H(f) is binary with

implications for ease of fabrication.

-31-



3.4 Phase Rotation

To calculate CCF(x) in Figure 14(c) we rotated the phase of

0 (f) before we binarized it. This was our rationale: First we

binarized the real part of o*(f) and found CCF(x). Then we

binarized the imaginary part of 0 *(f) and found CCF(x). The

results were different. This led us to examine CCF(x) as a

function of the rotation angle.

There seemed to be a particular angle, 30 degrees in this

case, where the peak was best defined. Figure (15) shows CCF(x)

for three of the angles: 0, 30 and 90 degrees. Arguably, the

second CCF in Figure 15 is the best formed.

To choose the best angle we start with a noiseless scene and

define a metric, M, as follows:

M = 1 / ( E CCF(k) - 1) , (18)

where CCF(k) is the discrete form of CCF(x). For a noiseless

scene we expect that CCF(k) will be unity at k = 0, representing

the energy in the object. All other non-zero value! of CCF(k)

represent noise, sometimes called clutter. Thus the sum of

CCF(k), less 1, will be a measure of the total clutter energy.

This implies that M is a signal-to-clutter ratio.

-32-



CCF:Binar filter

theta : 0 degrees

(b)

CCF:Binarg filter

theta : 39 degrees

CCr!Binarg filte~

thet~a = 99 degrees I *I.

AA)Yý. _A A.~ Ak , _________

Figure 15. Crosscorrelation for various phase-rotated binary filters.

(a) t - 0 , (b) t m/6, (c) t = ./2.
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In Figure 16 we show M for angles 0 to 90 degrees. (The

extended curve is symmetric about both 0 and 90 degrees.) It

peaks, somewhat weakly, at 30 degrees.

In Figure 17 we show the CCF plots for a noiseless scene and

for binarization angles of 0, 30, and 90 degrees. Indeed, the

30-degree plot does have the best shape (lowest sidelobes),

although the difference is not dramatic.

In Figures 18, 19 and 20 we show another example. The

object and noisy scene are in Figure 18. The CCF's for three

kinds of H(f) are shown in Figure 19. The binary phase-only CCF

in Figure 19(c) is that for the 30 degree rotation angle. And in

Figure 20 we show the CCF's for three rotation angles.

Note that the 90-degree CCF in Figure 20(c) is better than

that for 30 degrees. This is a typical result for noisy data and

led us to try averaging the CCF over the binarizing angle.
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4

M

3 i

0

0 30 60 90

Phase rotation angle, in degrees

Figure 16. Signal-to-clutter ratio, M, vs. angle.
(The plot is symmetric about both 0 and 90 degrees1 .)

-35-



CCF:Binaar filter

theta : 9 degrees (a)

CCF:Binar, filter

theta = 38 degrees
AA -I%

CCF:Binarg filter

th e ta = 99 d e grees A . N

Figure 17. Noiseless CCF's for angles of 0, 30 and 90 degrees.
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object

nois9 scene

Figure 18. Another example of object and noisy scene.
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CCF:CoMplex filter
(a)

CCF:Phase f il ter
(b)

CCF:Binarm filter
(c)

Figure 19. CCF's for various filters, scene of Figure 18.
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CCF:Binarg filter

theta = 8 degrees
m - , ,A .. AA A

CCFBinaru filter Wb)

theta = 39 degrees
.. . .. -~ _________A ., A,_ _

CCF:Binargj filter (c

theta = 99 degrees

Figure 20. CCF's for various phase-rotated binary filters.
(The 30-degree-filter CCF is also shown in Figure 19(c)
although the 90-degree CCF is the cleanest.)
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Our final example is shown in Figures 21, 22 and 23. The

"CCF:Binary filter" plot in Figure 22(c) was calculated by

averaging 10 CCF's for binarizing angles from 0 to 90 degrees.

It is a good compromise between the matched filter result in

Figure 22'a) and the phase-only filter result in Figure 22(b).

The individual CCF's for 0, 30 and 90 degrees are shown in

Figure 23. Significantly, each is inferior to the average, which

is shown in Figure 22(c). This result was quite consistent for

other noise realizations.
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object

noism scene

Vf''I

"-- I- 11,

Figure 21. Final example.
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(,a)

CCF:Complex filter

CCF:Phase filter (b)

CCF:Binarg filter -_>

Figure 22. CCF's for various filters, scene of Figure 21.
The binary filter is an average, as explained in the text.
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CCF:Binarg filter ()

theta : 9 degrees

CCF:Binary filter (b)

theta = 39 degrees
AA. --

CCF:Binarg filter

theta : 99 degrees A

Figure 23. CCF's for various phase-rotated binary filters.
(The average of 10 such results is shown in Figure 22(c).
Note that Figure 22(c) is cleaner than any of these.)
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3.5 Discussion

We have made some very modest attempts to understand and to

model the binary phase-only filtering technique. We find that

the phase-only filter can be advantageously rotated before the

binarization process. Hlowever it is difficult to predict, in the

face of noisy data, which angle produces the best

crosscorrelation.

An average-over-angle technique is introduced. This

approach is like the classical minimax (minimize the maximum

error) approach to detection of a signal with random phase - a

solution that requires an assumption of uniformly distributed,

random phases and gives rise to in-phase (0 degree) and

quadrature (90 degree) detection.

These examples and observations lead to several questions:

1. Does the averaging of binary phase-only filtered
CCF's have a theoretical basis?

2. Do these results/observations extent to imaging in
two dimensions?

3. What is the expected performance?

4. How would an optical system achieve the averaging?

5. Would averaging over just two angles, say 0' and 90"
be a good approach?

These are questions that are left to further study.
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